Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contact Us Login 
An Official Publication of the Indian Association of Oral and Maxillofacial Pathologists

  Table of Contents    
Year : 2016  |  Volume : 20  |  Issue : 3  |  Page : 474-479

Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review

Department of Oral Medicine and Radiology, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India

Date of Submission01-Jun-2016
Date of Acceptance02-Sep-2016
Date of Web Publication21-Sep-2016

Correspondence Address:
Archana Venugopal
Department of Oral Medicine and Radiology, Saveetha Dental College, Saveetha University, 162, Poonamalle High Road, Velappanchavadi, Chennai - 600 077, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-029X.190951

Rights and Permissions



Matrix metalloproteinase-9 (MMP-9) is an inducible enzyme. Oral potentially malignant disorders (OPMDs) are considered as the early tissue changes that happen due to various habits such as smoking tobacco, chewing tobacco or stress. This alteration in the tissues alters the expression of MMP-9. The rationale of the review is to know the expression of MMP-9 in OPMDs. Hand searching and electronic databases such as PubMed and ScienceDirect were done for mesh terms such as OPMDs and MMP-9. Eight articles were obtained, after applying inclusion and exclusion criteria. These articles were assessed with QUADAS and data were extracted and evaluated. The included eight studies were done in 182 oral squamous cell carcinoma cases, 430 OPMDs (146 oral lichen planus, 264 leukoplakia and 20 oral submucous fibrosis) and 352 healthy controls evaluated for MMP-9. MMP-9 expression was found to be elevated in tissue, serum and saliva samples of OPMDs than in healthy controls. There is only one study in each serum and saliva samples to evaluate MMP-9. Saliva being noninvasive and serum being minimally invasive, more studies need to be done in both serum and saliva to establish MMP-9 as an early diagnostic marker in OPMDs to know its potential in malignant transformation.

Keywords: Leukoplakia, matrix metalloproteinase-9, oral lichen planus, oral potentially malignant disorders, oral submucous fibrosis

How to cite this article:
Venugopal A, Uma Maheswari T N. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review. J Oral Maxillofac Pathol 2016;20:474-9

How to cite this URL:
Venugopal A, Uma Maheswari T N. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review. J Oral Maxillofac Pathol [serial online] 2016 [cited 2022 May 19];20:474-9. Available from: https://www.jomfp.in/text.asp?2016/20/3/474/190951

   Introduction Top

Matrix metalloproteinases (MMPs) are secreted by macrophages, neutrophils and fibroblasts due to the stimulus from the transforming growth factor β (TGF-β) and interleukin-8 (IL-8). Hence, secreted MMPs maintain the bioavailability of growth factors, thus promoting cancer proliferation. It cleaves the FAS receptors and suppresses natural killer cells, resisting the apoptosis. It promotes and inhibits angiogenesis. In addition, it increases the bioavailability of vascular endothelial growth factor receptor (VEGFR) to cause neovascularization. Substances such as tumstatin, endostatin, angiostatin and endorepellin inhibit angiogenesis. [1] MMPs action in the cell-to-cell adhesion and cell-to-extracellular matrix adhesion is responsible for the promotion of malignancy.

The expression of MMP-9 has proved to be a diagnostic marker in oral cancer in the tissue, [2] serum [3] and saliva [4] samples in various studies. An overall incidence of cancer in Central Asia is at the rate of 100.8/100,000 in world. Oral cavity cancer claims 145,400 deaths in a year worldwide. The predisposing factors for oral cavity cancer include smoking and smokeless tobacco, alcohol and human papillomavirus infections. [5] Oral carcinoma develops from oral potentially malignant disorders (OPMDs). [6] Potentially malignant disorder, the term was proposed as all the conditions called to be so, does not transform into malignancy. [7] The prevalence rate of oral lesions is 4.1% in South India. [8] The rate of oral potential malignant disorder transforming to malignancy is 2%-3%. [9] OPMDs are considered as the early tissue changes due to various habits such as smoking and chewing tobacco.

There are several studies that have been done in the relationship of MMPs to cancer invasion, progression, apoptosis, migration and neovascularization in cancer. MMP-9 is an inducible enzyme, unlike MMP-1 and MMP-2 which are constitutive enzymes. [10] Hence, its levels would be altered during the changes in the tissues. The rationale of the review is to know the expression of MMP-9 in OPMD. To know which of these that is tissue, saliva or serum is the most reliable means of detecting the expression of MMP-9.

   Methodology Top

Various databases such as PubMed and ScienceDirect were searched using the key words of OPMD, oral leukoplakia, oral submucous fibrosis (OSMF), oral lichen planus (OLP), oral cancer, MMP-9, gelatinase B, 92K Da gelatinase, 92 K Da Type IV collagenase. A total of 35 articles were identified, in which 5 article was obtained by hand searching.

Inclusion criteria

Articles in English language which reported checking of the MMP-9 levels in tissue, saliva or serum samples of OPMD during 2005-2015 were included in the study.

Exclusion criteria

Animal studies were excluded. The studies done only in oral cancer excluding the OPMDs were excluded. The studies done in cancers other than oral cancer were excluded from the study.

Applying these inclusion and the exclusion criteria, 32 articles were excluded as one of them was a study on animals, one of them was in Russian language, one article was not done with in the time period of the included study and the rest of the twenty nine were either done in a different MMP or in a different cancer or only in oral cancer and not in OPMDs [Figure 1]. A total of eight studies were obtained which were assessed by QUADAS, [11] quality assessment tool for risk of bias and acceptability concern. Data were collected using a table having all the characteristics of the included study [Table 1].
Figure 1: Prisma flowchart for selection of studies

Click here to view
Table 1: Characteristics of included studies

Click here to view

   Results Top

These studies were done on 182 oral squamous cell carcinoma (OSCC) cases, 430 OPMDs (146 OLP, 264 leukoplakia and 20 OSMF) and 352 controls evaluated for MMP9 [Figure 2]. In all the studies except one study, [12] MMP-9 expression has been statistically proved to be elevated in OPMDs than in healthy controls. Moreover, MMP-9 expression in OPMDs was decreased than in OSCC. The study in the saliva states MMP-9 to have a sensitivity of 35.3% and specificity of 100%. The study in serum states sensitivity of 67.4% and specificity of 90%. Whereas, the studies in tissues have not given any sensitivity or specificity of MMP-9 or the cutoff value to clearly identify the condition.
Figure 2: Total distribution chart of samples of tissue, serum and saliva in the included studies

Click here to view

   Discussion Top

MMPs occur in human samples, which can be evaluated by immunohistochemistry, enzyme-linked immunosorbent assays (ELISA), zymography and real-time polymerizing chain reaction. Immunohistochemistry is the most commonly used methodology in tissue samples, [12],[15],[16],[17],[18],[19] which has not quantified the MMP-9 levels, it also cannot differentiate between the latent and active forms of MMP. In serum sample, only a single study has been done in which MMP-9 is quantified by ELISA, [14] which is sensitive but expensive. Gelatin zymography is cost-effective, can be reproduced and can differentiate between latent and active form of the enzyme. In the saliva samples, the method used is real-time reverse transcriptase polymerizing chain reaction to detect the genetic expression of mRNA of MMP-9, [13] which makes the technique more sensitive.

The studies considered in this review have proved that MMP-9 has a positive correlation with VEGFR2 (r = +0.452) and epithelial dysplasia grading in oral leukoplakia samples. [17] Inflammatory markers (IL-6, M-CSF, TGF-β1, intercellular adhesion molecule-1, E-selectin, C-reactive protein [CRP], serum amyloid A, MMP-2), were analyzed in oral leukoplakia cases, showed rise in TGF-β, E selectin, CRP, MMP-2 and MMP-9 levels and the markers such as MMP-9, CRP and TGF-β correlated with disease progression. This study proved MMP-9 to have highest diagnostic power among the four markers (MMP-2, MMP-9, TGF-β and CRP) to distinguish oral leukoplakia and OSCC from healthy control. [14] In a study on OLP, a positive correlation was found between MMP-2 and MMP-9 and the expression of TGF-β showed increase with the level of MMP-9. [19] CD4 + , CD25 + and MMP-9 levels were significantly increased in OLP when compared to healthy control group. [13] In the tissue samples of OLP, MMP-9 showed to stain the stratum basale and the stratum spinosum of the keratinocytes and this study did not test the hypothesis of the study; hence, there is a high risk of bias. [12] The stromal staining of MMP-9 in tissue samples of OSMF was 100% when compared to 20% in healthy controls. This study also states the stromal staining of MMP-2, MMP-1, tissue inhibitors of metalloproteinase-1 (TIMP-1) and TIMP-2, which were also elevated like MMP-9. [16] MMP-2, MMP-9, TIMP-1 and TIMP-2 showed a significant variation from the normal control in tissue samples of OLP. [15] The elevated level of MMP-9 posttreatment was also revealed to be a marker for recurrence of OSCC. [14]

Tissue inhibitors or TIMPs inhibit the action of MMPs. The imbalance between the MMPs and the TIMPs is one of the reasons for progression of malignancy. Of the eight studies, three studies [15],[16],[18] done on tissue samples have compared MMP-9 with TIMPs. Two studies have seen them in OLP and one has done in OSMF. One study on submucous fibrosis states that TIMP-1 does not give a statistically significant result while TIMP-2 does. One of the studies does not mention about the relationship of MMP-9 to TIMPs. [16] While the other study says that TIMP-1 and TIMP-2 are expressed more strongly than in the OSCC, no relation was found with the level of MMP-9. [15] MMP-9 is inhibited by all the four TIMPs (TIMP-1, TIMP-2, TIMP-3 and TIMP-4). [20] Only TIMP-1 and TIMP-2 have been estimated in three of the above studies and the remaining two TIMPs (TIMP-3 and TIMP-4) have not been evaluated. There are synthetic TIMPs and also TIMPs specific to MMPs being developed, [20] which can be used in intervention of malignancies.

One study done in saliva samples (AUC-0.647) [13] [Table 2] and another done in serum samples (AUC-0.806) [14] [Table 3] have mentioned the sensitivity, specificity [Figure 3] and receiver operating characteristic (ROC) for MMP-9 [Figure 4] and other markers in them, the remaining six studies [12],[15],[16],[17],[18],[19] [Table 4] being diagnostic tests, have not mentioned the sensitivity, specificity and ROC. Index test and cutoff value for the marker have been calculated before the study only in one study done in saliva samples. However, the major shortcomings of these two studies [13],[14] is that the clinical diagnosis of OLP and oral leukoplakia is not confirmed by tissue biopsy.
Figure 3: Sensitivity and specificity of matrix metalloproteinase-9 in detecting oral potentially malignant disorders

Click here to view
Figure 4: Risk of bias and applicability concern

Click here to view
Table 2: Data extraction of saliva samples

Click here to view
Table 3: Data extraction of serum samples

Click here to view
Table 4: Data extraction in tissues

Click here to view

   Conclusion Top

From these studies, the levels of MMP-9 in potentially malignant disorder shows elevation in the eight studies when compared to healthy control samples, but decreased levels than OSCC. [14],[17],[19] The studies were heterogenous and were done on different samples such as tissue serum and saliva. The expression of MMP-9 is in different scale of measurements in different studies. Hence, there is a need for homogenous studies with tissue, saliva and serum sample of same patient and longer follow-up periods. Six of the studies have been done in the tissue samples of OPMDs; there is only one study in serum and one study in noninvasive diagnostic tool such as saliva. Due to the technical difficulty in handling saliva and storing it without the degradation of the content, minimally invasive serum samples would be better in evaluating the MMP-9 and quantifying its expression in oral potentially malignant disorders such as oral leukoplakia, OLP and OSMF.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 2011;278:16-27.  Back to cited text no. 1
Patel BP, Shah SV, Shukla SN, Shah PM, Patel PS. Clinical significance of MMP-2 and MMP-9 in patients with oral cancer. Head Neck 2007;29:564-72.  Back to cited text no. 2
Lotfi A, Mohammadi G, Tavassoli A, Mousaviagdas M, Chavoshi H, Saniee L. Serum levels of MMP9 and MMP2 in patients with oral squamous cell carcinoma. Asian Pac J Cancer Prev 2015;16:1327-30.  Back to cited text no. 3
Shpitzer T, Hamzany Y, Bahar G, Feinmesser R, Savulescu D, Borovoi I, et al. Salivary analysis of oral cancer biomarkers. Br J Cancer 2009;101:1194-8.  Back to cited text no. 4
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.  Back to cited text no. 5
George A, Sreenivasan BS, Sunil S, Varghese SS, Thomas J, Devi G, et al. Potentially malignant disorders of oral cavity. J Oral Maxillofac Pathol 2011;2:95-100.  Back to cited text no. 6
Warnakulasuriya S, Johnson NW, van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med 2007;36:575-80.  Back to cited text no. 7
Saraswathi TR, Ranganathan K, Shanmugam S, Sowmya R, Narasimhan PD, Gunaseelan R. Prevalence of oral lesions in relation to habits: Cross-sectional study in South India. Indian J Dent Res 2006;17:121-5.  Back to cited text no. 8
[PUBMED]  Medknow Journal  
van der Waal I. Oral potentially malignant disorders: Is malignant transformation predictable and preventable? Med Oral Patol Oral Cir Bucal 2014;19:e386-90.  Back to cited text no. 9
Thomas GT, Lewis MP, Speight PM. Matrix metalloproteinases and oral cancer. Oral Oncol 1999;35:227-33.  Back to cited text no. 10
Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-36.  Back to cited text no. 11
Paulusová V, Laco J, Drízhal I, Slezák R. Expression of matrix metalloproteinase 9 in patients with oral lichen planus. Acta Medica (Hradec Kralove) 2012;55:23-6.  Back to cited text no. 12
Fathi MS, El Dessouky HF, Breni HA. CD4+CD25+T regulatory cells and MMP-9 as diagnostic salivary biomarkers in oral lichen planus. Egypt J Immunol 2013;20:39-53.  Back to cited text no. 13
Chang PY, Kuo YB, Wu TL, Liao CT, Sun YC, Yen TC, et al. Association and prognostic value of serum inflammation markers in patients with leukoplakia and oral cavity cancer. Clin Chem Lab Med 2013;51:1291-300.  Back to cited text no. 14
Al-Rawi N, Majeed A, Al-Kassam T. Expression of matrix metalloproteinase-2 and 9 with their inhibitors, tissue inhibitors of metalloproteinase-1 and 2 in oral lichen planus. J Orofac Sci 2014;6:25.  Back to cited text no. 15
  Medknow Journal  
Rajendran R, Rajeesh MP, Shaikh SS, Pillai MR. Expression of matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and their inhibitors (TIMP-1 and TIMP-2) in oral submucous fibrosis. Indian J Dent Res 2006;17:161-6.  Back to cited text no. 16
[PUBMED]  Medknow Journal  
de Carvalho Fraga CA, Farias LC, de Oliveira MV, Domingos PL, Pereira CS, Silva TF, et al. Increased VEGFR2 and MMP9 protein levels are associated with epithelial dysplasia grading. Pathol Res Pract 2014;210:959-64.  Back to cited text no. 17
Tortorici S, Mauro A, Burruano F, Difalco P, Leone A, Gerbino A, et al. Matrix metalloproteinase-2 matrix metalloproteinase-9 and inducible nitric oxide synthase in oral leukoplakia: Immunohistochemistry and RT-PCR analysis. J Biol Regul Homeost Agents 2008;22:125-30.  Back to cited text no. 18
Chen Y, Zhang W, Geng N, Tian K, Jack Windsor L. MMPs, TIMP-2, and TGF-beta1 in the cancerization of oral lichen planus. Head Neck 2008;30:1237-45.  Back to cited text no. 19
Fluctuating Roles of Matrix Metalloproteinase-9 in Oral Squamous Cell Carcinoma. Available from: http://www.hindawi.com/journals/tswj/2013/920595/. [Last accessed on 2016 Jul 03].  Back to cited text no. 20


  [Figure 1], [Figure 2], [Figure 3], [Figure 4]

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Probiotics as Potential Biological Immunomodulators in the Management of Oral Lichen Planus: What’s New?
Paola Zanetta, Margherita Ormelli, Angela Amoruso, Marco Pane, Barbara Azzimonti, Diletta Francesca Squarzanti
International Journal of Molecular Sciences. 2022; 23(7): 3489
[Pubmed] | [DOI]
2 The role of oral fluid biological markers in the clinical course of lichen planus
E. A. Gorbatova, M. V. Kozlova, N. E. Kushlinsky, E. S. Gerstein
Parodontologiya. 2021; 26(3): 203
[Pubmed] | [DOI]
3 Anti-inflammatory and antioxidant activity of lycopene, raspberry, green tea herbal formulation mediated silver nanoparticle
MukundhV Chaithanya, TN Uma Maheswari, S Rajeshkumar
Journal of Indian Academy of Oral Medicine and Radiology. 2021; 33(4): 397
[Pubmed] | [DOI]
4 Evaluation of matrix metalloproteinase 9 gene expression in oral squamous cell carcinoma and its clinicopathological correlation
Krishnapriya Umashankar, Gifrina Jayaraj, HeraldJ Sherlin, KR Don, Archana Santhanam
National Journal of Maxillofacial Surgery. 2021; 12(3): 339
[Pubmed] | [DOI]
5 Markers associated with malignant transformation of oral lichen planus: A review article
Narges Ghazi, Maryam Khorasanchi
Archives of Oral Biology. 2021; 127: 105158
[Pubmed] | [DOI]
6 Exploring the Cytotoxic Effects of the Extracts and Bioactive Triterpenoids from Dillenia indica against Oral Squamous Cell Carcinoma: A Scientific Interpretation and Validation of Indigenous Knowledge
Maniyamma Aswathy, Kishore Banik, Dey Parama, Parameswaran Sasikumar, Choudhary Harsha, Anuja Gracy Joseph, Daisy R. Sherin, Manojkumar K. Thanathu, Ajaikumar B. Kunnumakkara, Radhakrishnan Kokkuvayil Vasu
ACS Pharmacology & Translational Science. 2021; 4(2): 834
[Pubmed] | [DOI]
7 The Response of the Tongue Epithelial on Cigarette Smoke Exposure as a Risk Factor for Oral Cancer Development
Neken Prasetyaningtyas, Nabilah Azzahra Jatiatmaja, Desiana Radithia, Hening Tuti Hendarti, Adiastuti Endah Parmadiati, Priyo Hadi, Fatma Yasmin Mahdani, Diah Savitri Ernawati, Rosnah binti Zain, Nurina Febriyanti Ayuningtyas
European Journal of Dentistry. 2021; 15(02): 320
[Pubmed] | [DOI]
8 Steroids Alone, Versus Steroids with Antihistamines, in the Treatment of Oral Lichen Planus – A Comparative Study from Chennai, India
Deepigaa Manivasagam, Arvind Muthukrishnan
Journal of Evolution of Medical and Dental Sciences. 2021; 10(37): 3277
[Pubmed] | [DOI]
9 Genetic Susceptibility and Protein Expression of Extracellular Matrix Turnover-Related Genes in Oral Submucous Fibrosis
Ru-Hsiu Cheng, Yi-Ping Wang, Julia Yu-Fong Chang, Yu-Hwa Pan, Mei-Chi Chang, Jiiang-Huei Jeng
International Journal of Molecular Sciences. 2020; 21(21): 8104
[Pubmed] | [DOI]
10 CYFRA 21-1 and MMP-9 as salivary biomarkers for the detection of oral squamous cell carcinoma: a systematic review of diagnostic test accuracy
A.M. AlAli, T. Walsh, M. Maranzano
International Journal of Oral and Maxillofacial Surgery. 2020; 49(8): 973
[Pubmed] | [DOI]
11 Correlation of VEGF and MMP-2 levels in oral lichen planus: An in vivo immunohistochemical study
Hala H. Hazzaa, Marwa A.M. El Shiekh, Nora Abdelgawad, Ossama M. Gouda, Naglaa M. Kamal
Journal of Oral Biology and Craniofacial Research. 2020; 10(4): 747
[Pubmed] | [DOI]
12 Molecular markers associated with development and progression of potentially premalignant oral epithelial lesions: Current knowledge and future implications
Nikolaos G. Nikitakis, Monica Pentenero, Maria Georgaki, Catherine F. Poh, Douglas E. Peterson, Paul Edwards, Mark Lingen, John J. Sauk
Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2018; 125(6): 650
[Pubmed] | [DOI]
13 Bitter Melon Prevents the Development of 4-NQO–Induced Oral Squamous Cell Carcinoma in an Immunocompetent Mouse Model by Modulating Immune Signaling
Subhayan Sur, Robert Steele, Rajeev Aurora, Mark Varvares, Katherine E. Schwetye, Ratna B. Ray
Cancer Prevention Research. 2018; 11(4): 191
[Pubmed] | [DOI]


Print this article  Email this article


    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Article in PDF (776 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded562    
    Comments [Add]    
    Cited by others 13    

Recommend this journal

© Journal of Oral and Maxillofacial Pathology | Published by Wolters Kluwer - Medknow
Online since 15th Aug, 2007