Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contact Us Login 
An Official Publication of the Indian Association of Oral and Maxillofacial Pathologists


 
  Table of Contents    
ONLINE ONLY ARTICLES - ORIGINAL ARTICLE  
Year : 2019  |  Volume : 23  |  Issue : 1  |  Page : 156
 

Estimation of serum sialic acid in oral submucous fibrosis and oral squamous cell carcinoma


Department of Oral and Maxillofacial Pathology, Mamata Dental College and Hospital, Khammam, Telangana, India

Date of Submission22-Sep-2018
Date of Acceptance17-Dec-2018
Date of Web Publication17-Apr-2019

Correspondence Address:
Samatha Chittemsetti
Department of Oral and Maxillofacial Pathology, Mamata Dental College and Hospital, Khammam - 507 002, Telangana
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jomfp.JOMFP_239_18

Rights and Permissions

 

   Abstract 


Background and Objectives: Sialic acid (SA) N-acetyl neuraminic acid is a negatively charged 9-carbon monosaccharide, commonly attached to the nonreducing residues of carbohydrate chains of glycoconjugates by glycosidic linkage. SA is widely distributed in glycoproteins (GPs) of cell membrane. The alterations in GPs start at an early stage of tumorigenesis. Hence, the aim of the present study is to evaluate the levels of serum SA in normal individuals, in patients with oral submucous fibrosis (OSMF), oral squamous cell carcinoma (OSCC), and compare the levels with respect to the clinical staging and histological grading.
Materials and Methods: A total of 90 individuals were selected for the purpose of the study. Thirty cases of clinically diagnosed and histopathologically confirmed cases of OSMF and OSCC each were included. A control group of 30 age and gender-matched individuals with no systemic diseases were selected. Serum levels of SA were measured based on the reaction between SA and ninhydrin. The absorbance was read using a spectrophotometer.
Results: Serum SA levels were significantly increased in OSMF, OSCC patients as compared with controls. When multiple comparison was done using post hoc Tukey test, there is a statistically significant difference between clinical staging and histopathological grading of OSMF and OSCC (P < 0.05).
Conclusion: The serum SA levels in OSMF and OSCC patients were increased as compared with controls suggesting that, it can be used as a reliable biomarker for prognostic evaluation, and also give a clue about the amount of tumor burden in the individual.


Keywords: Oral squamous cell carcinoma, oral submucous fibrosis, sialic acid


How to cite this article:
Chittemsetti S, Manchikatla PK, Guttikonda V. Estimation of serum sialic acid in oral submucous fibrosis and oral squamous cell carcinoma. J Oral Maxillofac Pathol 2019;23:156

How to cite this URL:
Chittemsetti S, Manchikatla PK, Guttikonda V. Estimation of serum sialic acid in oral submucous fibrosis and oral squamous cell carcinoma. J Oral Maxillofac Pathol [serial online] 2019 [cited 2019 Sep 19];23:156. Available from: http://www.jomfp.in/text.asp?2019/23/1/156/256438





   Introduction Top


Head and neck cancers (HNCs) have emerged as a leading cause of cancer-related mortality and morbidity worldwide.[1] Oral cancer encompasses an important group of HNC with ≥90% of them being oral squamous cell carcinomas (OSCCs).[2]

Although the oral cavity is frequently examined, 60% of intraoral carcinomas are in advanced stage at the time of detection.[3] Persistent difficulties arising in oral cancer are late diagnosis, poor response of tumor to chemotherapy, lack of reliable biomarkers for early diagnosis and posttherapeutic monitoring.[4] Therefore, early detection of oral cancer is of utmost importance for improving the survival rate and prognosis of patients with the disease.[2]

OSCC is generally preceded by oral potentially malignant disorders (OPMDs), such as oral submucous fibrosis (OSMF).[5] The hallmark of the disease is submucosal fibrosis that affects most parts of the oral cavity, pharynx, and upper third of esophagus.[6] The rate of malignant transformation has been reported to be 7%–13%.[7]

Sialic acid (SA) which is also called as N-acetyl neuraminic acid is a promising cancer biomarker. It is a negatively charged 9-carbon monosaccharide and present as the terminal components of side chains of glycoproteins (GPs) and glycolipids (GLs), which are the important constituents of cell membranes.[8],[9] Cell surface is transformed during carcinogenesis, and the malignant cell surface GPs and GLs have altered carbohydrate compositions that may contribute to aberrant cell–cell recognition, cell adhesion, antigenicity, and the invasiveness demonstrated by malignant cells.[10] The altered glycoconjugates are released into the circulation and body fluids through increased turnover, secretion, and/or shedding from malignant cells and are of considerable interest for their potential diagnostic and prognostic value.[9]

The significant elevations in these GP constituents in patients with OPMDs and OSCC could be indicators of early biochemical changes. Hence, the present study was undertaken to estimate the serum SA levels in OSMF and OSCC.

Objectives

  1. To compare the serum SA levels in normal individuals, patients with OSMF and OSCC
  2. To evaluate and compare the serum SA levels with respect to clinical staging in OSMF
  3. To evaluate and compare the serum SA levels with respect to clinical staging in OSCC
  4. To estimate serum SA levels with respect to histopathological grading of OSMF
  5. To estimate the serum SA levels with respect to histopathological grading of OSCC.



   Materials and Methods Top


Thirty cases each of clinically proven and histopathologically confirmed OSMF and OSCC attending the outpatient department of our college were included in the study group. A group of 30 healthy individuals were taken as controls. The research protocol was reviewed and approved by the Ethical Committee of our institution.

Inclusion criteria

This include patients with OSMF and OSCC.

Exclusion criteria

  1. Patients with a history of systemic diseases such as diabetes mellitus, cardiovascular diseases and infectious diseases
  2. Patients treated previously for oral cancer and potentially malignant disorders.


These patients were subjected to a detailed history and a thorough clinical examination.

The OSMF cases were staged clinically [Figure 1]a based on the interincisal distance according to Lai et al.,[11] and graded histopathologically [Figure 2]a,[Figure 2]b,[Figure 2]c according to Utsunomiya et al.[12]
Figure 1: Clinical photograph depicting (a) Oral submucous fibrosis. (b) Oral squamous cell carcinoma

Click here to view
Figure 2: Photomicrograph illustrating histopathological grading of oral submucous fibrosis cases (a) Early (b) Intermediate (c) Advanced and oral squamous cell carcinoma cases (d) Well-differentiated (e) Moderately differentiated (f) Poorly differentiated, respectively in low-power magnification (H and E, ×10)

Click here to view


The OSCC cases were staged clinically [Figure 1]b based on tumor-node-metastasis staging[13] and histopathologically [Figure 2]d,[Figure 2]e,[Figure 2]f into three grades based on the modified Broder's[14] system of classification.

After histological confirmation, the patients were recalled for the collection of blood. A volume of 5 ml of venous blood was collected and serum was immediately separated by centrifugation for 5 min at 3000 rpm. The supernatant was separated and stored at −20°C until analyzed.

Biochemical analysis of the serum collected was analyzed based on the reaction between SA and ninhydrin in the presence of acidic medium (according to Yao et al.).[15] This leads to the formation of a colored product which can be measured by using spectrophotometer at 470 nm.

Acid ninhydrin reagent was freshly prepared. About 250 mg ninhydrin was dissolved in 6 ml glacial acetic acid and 4 ml concentrated HCL, by thorough vortexing for 30 min.

Procedure

A volume of 0.1 ml of serum is mixed with 0.9 ml of saline. To this solution, 4 ml of ethanol is added and the precipitate is obtained, followed by centrifugation. To the precipitate, 1.0 ml of distilled water and 1.0 ml glacial acetic acid was added, followed by 1.0 ml of acid ninhydrin reagent. The reaction mixture was vortexed and then heated for 10 min in a boiling water bath. After cooling, the mixture under tap water, absorbance was measured at 470 nm using spectrophotometer.

Statistical analysis

All the variables of the study were tabulated and statistically analyzed for the mean values, standard deviation (SD) and P value using the statistical package software system SPSS Version 20 (SPSS Statistics for Windows, IBM Corp., Armonk, NY, USA). The statistical comparison of biochemical parameter was performed by post hoc Tukey's test.


   Results Top


Distribution of patients

Based on clinical staging, OSMF patients were categorized into Group A, B, C, and D which included 10 cases (33.33%), 7 cases (23.33%), 8 cases (26.66%) and 5 cases (16.66%), respectively. Similarly, based on the histopathological grading, they were categorized into early, intermediate, advanced grades which included 13 cases (43.33%), 8 cases (26.66%), and 9 cases (30%), respectively.

OSCC patients were clinically subdivided into T1, T2, T3 and T4 stages which included 13 cases (43.33%), 12 cases (40%), and 5 cases (16.66%), respectively. No cases of T4 stage were recorded during the study.

According to histopathological grading, OSCC cases were graded as well-differentiated, moderately differentiated and poorly differentiated which included 10 cases (33.33%), 16 cases (53.33%) and 4 cases (13.33%), respectively.

Serum SA levels were evaluated in both the study group and in the control group. The mean serum SA levels with SD were calculated for control group (3.78 ± 1.06), OSMF (19.99 ± 3.83) and OSCC (35.14 ± 7.87) [Table 1] and [Figure 3].
Table 1: Pair-wise comparison of mean serum sialic acid levels among controls, oral submucous fibrosis and oral squamous cell carcinoma using Tukey's multiple post hoc procedures

Click here to view
Figure 3: Graph illustrating comparison of normal, oral submucous fibrosis and carcinoma groups with respect to the serum sialic acid levels

Click here to view


In pair-wise comparison of clinical stages [Table 2] and [Figure 4] and histological grading [Table 3] and [Figure 5] of OSMF done by Tukey's multiple post hoc procedure, the increase in mean serum SA levels between any two groups was found to be statistically significant (P < 0.05).
Table 2: Pair-wise comparison of clinical stages of oral submucous fibrosis group with respect to the serum sialic acid levels by Tukey's multiple post hoc procedures

Click here to view
Figure 4: Graph illustrating the comparison of clinical stages of oral submucous fibrosis group with respect to the serum sialic acid levels

Click here to view
Table 3: Pair-wise comparison of histological grading of oral submucous fibrosis group with respect to the serum sialic acid levels by Tukey's multiple post hoc procedures

Click here to view
Figure 5: Graph illustrating the comparison of histological grading of oral submucous fibrosis group with respect to the serum sialic acid levels

Click here to view


Furthermore, in pair-wise comparison of clinical stages [Table 4] and [Figure 6] and histological grading [Table 5] and [Figure 7] of OSCC done by Tukey's multiple post hoc procedure, the increase in mean serum SA levels between any two groups was found to be statistically significant (P < 0.05).
Table 4: Pair-wise comparison of oral squamous cell carcinoma clinical stages with respect to the serum sialic acid levels by Tukey's multiple post hoc procedures

Click here to view
Figure 6: Graph illustrating the comparison of oral squamous cell carcinoma clinical stages with respect to the serum sialic acid levels

Click here to view
Table 5: Pair-wise comparison of oral squamous cell carcinoma histological grading with respect to the serum sialic acid levels by Tukey's multiple post hoc procedures

Click here to view
Figure 7: Graph illustrating the comparison of oral squamous cell carcinoma histological grading with respect to the serum sialic acid levels

Click here to view



   Discussion Top


OSCC is the sixth-most common cancer worldwide[9] with a 5-year mortality rate of almost 50%, which has not changed significantly in the last 5 decades despite the advances in the multimodality treatment.[16] OSCC is generally preceded by OPMDs such as OSMF. Detection of dysplastic changes in OPMDs is also very essential which can significantly decrease the mortality rate.

During the cancer growth, certain substances are quantitatively changed in the serum known as tumor markers or biochemical serum markers which are receiving more attention in early diagnosis as well as predicting prognosis of the lesion.[17]

Neoplastic transformation is associated with altered cell surface components and the identification of such changes may provide the basis for using carbohydrate antigens as tumor markers. Measurements of these entities may be valuable in establishing the diagnosis, staging of disease, detecting metastasis, identifying patients at high risk for recurrence and evaluating therapeutic response.[18]

The alterations in GPs start at an early stage of tumorigenesis. GPs and GLs are the major constituents of cell membrane. The carbohydrate portions of these glycoconjugates project from the outer surface of the membrane and form the cell coat. The cell coat is made up predominantly of SA which is attached to glycoconjugates by glycosidic linkage.[19],[20],[21] SAs have been implicated in a number of phenomena, including metastatic spread, cell contact, cell recognition, tumor antigenicity, transport process and viral receptors. Being nonreducing termini, SA has gained outstanding importance in cancer research.[22],[23],[24] One of the most common changes in glycoconjugates during malignant transformation is the increase in size of oligosaccharides resulting in branching sites for the incorporation of SA.[24]

Aberrant glycosylation of glycoconjugates is one of the important molecular changes that accompany malignant transformation where the transformed cells increase synthesis of carbohydrates, thereby increase the levels of SA on their surfaces.[25] This altered process responsible for proliferation may be due to either the absence of normal glycosyltransferases or the activation of new tumor-related enzymes.[26]

In the present study, the serum SA levels were evaluated in controls, OSMF and OSCC individuals. When multiple comparison was done by using post hoc Tukey's test, there is a significant increase in the levels of serum SA in subjects with OSMF and OSCC compared to controls (P = 0.0001). The present study results were in accordance with the study done by Vajaria et al.,[4] Dadhich et al.,[9] Chandrabose et al.,[18] Taqi[25] Baxi et al.,[27] Joshi and Patil,[28] Kadam et al.,[29] Sawhney and Kumar[30] and Pradeep et al.,[31] where progressive increase in mean serum SA levels was noticed in patients with OSCC than OPMDs and controls. The significant elevations in these important GP constituents in patients with OPMDs could be the indicators of early biochemical changes because of the malignant transformation of the cell. Thus, the alterations in SA could discriminate between patients with OPMDs and OSCC patients.

The present study results were also in accordance with the study conducted by Chinnannavar et al.,[3] Rajpura et al.,[32] Xing et al.,[33] Shashikanth and Rao[34] Kimura et al.,[35] Wilma Delphine Silvia et al.[36] and Dhakar et al.,[37] who reported a significant increase in the mean serum SA levels in OSCC compared to the normal individuals. It has been demonstrated that SA increases at the tumor cell surface, so the increase in their serum levels may be related to their increased release through increased turnover, secretion and shedding.

In our study, serum SA levels in OSMF patients were compared with respect to clinical staging, and histopathological grading using post hoc Tukey's test. The results showed a statistically significant increase in the levels as the clinical stage of OSMF advances. Similarly, as the histopathological grade of OSMF increases from early to intermediate to advanced, there is a statistically significant rise in the serum SA levels (P < 0.05). This study was first of its kind to compare the SA levels in OSMF cases based on the clinical staging and histopathological grading.

In the present study, serum SA levels were also compared in OSCC patients with respect to clinical staging, and histopathological grading using post hoc Tukey's test. The results showed statistical significant increase in levels as the stage advances from I to II to III (P < 0.05). Stage IV cases were not recorded during the course of the study. These findings were similar to the study done by Taqi,[25] Baxi et al.,[27] Kadam et al.,[29] Sawhney and Kumar[30] and Rajpura et al.[32] where SA levels progressively increased as the stage advanced from I to IV suggesting SA levels were directly proportional to the tumor burden. In contrast to the present study, the study conducted by Shashikanth and Rao[34] and Dhakar et al.[37] did not show any correlation of SA levels with respect to the clinical staging.

Furthermore, results revealed statistical significant increase in levels from well-differentiated to moderate to poorly differentiated squamous cell carcinoma. This may be due to the tumor differentiation and increased shedding of the malignant cells into the circulation as a result of metastasis. These findings were similar to the study done by Rajpura et al.[32] and Dhakar et al.,[37] who reported the rise in levels as the grade of OSCC progressed. A study conducted by Taqi,[25] Joshi et al.[28] and Shashikanth and Rao[34] did not show any significant changes in histopathological grading-wise analysis of SA which is contrary to the present study.

The present study reveals that serum SA levels may be taken as a reliable biomarker for prognostic evaluation, and also it gives a clue about the amount of tumor burden in the individual.


   Conclusion Top


The present study is a simple and a cost-effective method of estimating serum SA levels and therefore can be used as a screening marker in identifying individuals with suspected OPMDs such as OSMF and assessing early malignant change. This marker also aids in increasing the accuracy of clinical diagnosis, and assessing the spread and invasiveness of the cancer of the oral cavity suggesting its use as a prognostic indicator. However, further research should be carried out in a larger sample size to support the findings of the current study.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Rathanshetty KS, Kali A. Evaluation of serum sialic acid levels in head and neck malignancies. Int J Pharm Bio Sci 2014;5:962-7.  Back to cited text no. 1
    
2.
Bano S, David MP, Indira AP. Salivary biomarkers for oral squamous cell carcinoma: An overview. IJSS Case Rep Rev 2015;1:39-45.  Back to cited text no. 2
    
3.
Chinnannavar SN, Ashok L, Vidya KC, Setty SM, Narasimha GE, Garg R, et al. Evaluation of serum sialic acid, fucose levels and their ratio in oral squamous cell carcinoma. J Int Soc Prev Community Dent 2015;5:446-50.  Back to cited text no. 3
    
4.
Vajaria BN, Patel KR, Begum R, Shah FD, Patel JB, Shukla SN, et al. Evaluation of serum and salivary total sialic acid and α-l-fucosidase in patients with oral precancerous conditions and oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;115:764-71.  Back to cited text no. 4
    
5.
More CB, Gupta S, Joshi J, Varma SN. Classification system for oral submucous fibrosis. J Indian Acad Oral Med Radiol 2012;24:24-9.  Back to cited text no. 5
  [Full text]  
6.
Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: Review on mechanisms of pathogenesis and malignant transformation. J Carcinog Mutagen 2013;5:1-11.  Back to cited text no. 6
    
7.
Gupta MK, Mhaske S, Ragavendra R, Imtiyaz N. Oral submucous fibrosis – Current concepts. People J Sci Res 2008;1:39-44.  Back to cited text no. 7
    
8.
Kurtul N, Cil MY, Paçaci SD. Serum total sialic acid levels in smokers and users of smokeless tobacco in form of oral powder (maraş powder). J Biomed Sci 2005;12:559-63.  Back to cited text no. 8
    
9.
Dadhich M, Prabhu V, Pai VR, D'Souza J, Harish S, Jose M, et al. Serum and salivary sialic acid as a biomarker in oral potentially malignant disorders and oral cancer. Indian J Cancer 2014;51:214-8.  Back to cited text no. 9
[PUBMED]  [Full text]  
10.
Plucinsky MC, Riley WM, Prorok JJ, Alhadeff JA. Total and lipid-associated serum sialic acid levels in cancer patients with different primary sites and differing degrees of metastatic involvement. Cancer 1986;58:2680-5.  Back to cited text no. 10
    
11.
Lai DR, Chen HR, Lin LM, Huang YL, Tsai CC. Clinical evaluation of different treatment methods for oral submucous fibrosis. A 10-year experience with 150 cases. J Oral Pathol Med 1995;24:402-6.  Back to cited text no. 11
    
12.
Utsunomiya H, Tilakaratne WM, Oshiro K, Maruyama S, Suzuki M, Ida-Yonemochi H, et al. Extracellular matrix remodeling in oral submucous fibrosis: Its stage-specific modes revealed by immunohistochemistry and in situ hybridization. J Oral Pathol Med 2005;34:498-507.  Back to cited text no. 12
    
13.
Greene FL, Page DL, Fleming ID. Tumor-node-metastasis (TNM) staging system for oral carcinoma. AJCC Cancer Staging Manual. 4th ed. New York: Springer; 2002.  Back to cited text no. 13
    
14.
Acharya S, Sivakumar AT, Shetty S. Cervical lymph node metastasis in oral squamous cell carcinoma: A correlative study between histopathological malignancy grading and lymph node metastasis. Indian J Dent Res 2013;24:599-604.  Back to cited text no. 14
[PUBMED]  [Full text]  
15.
Yao K, Ubuka T, Masuoka N, Kinuta M, Ikeda T. Direct determination of bound sialic acids in sialoglycoproteins by acidic ninhydrin reaction. Anal Biochem 1989;179:332-5.  Back to cited text no. 15
    
16.
Wu JY, Yi C, Chung HR, Wang DJ, Chang WC, Lee SY, et al. Potential biomarkers in saliva for oral squamous cell carcinoma. Oral Oncol 2010;46:226-31.  Back to cited text no. 16
    
17.
Berlin NI. Tumor markers in cancer prevention and detection. Cancer 1981;47:1151-3.  Back to cited text no. 17
    
18.
Bose KS, Gokhale PV, Dwivedi S, Singh M. Quantitative evaluation and correlation of serum glycoconjugates: Protein bound hexoses, sialic acid and fucose in leukoplakia, oral sub mucous fibrosis and oral cancer. J Nat Sci Biol Med 2013;4:122-5.  Back to cited text no. 18
    
19.
Dabelsteen E. Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol 1996;179:358-69.  Back to cited text no. 19
    
20.
Smets LA, Van Beek WP. Carbohydrates of the tumor cell surface. Biochim Biophys Acta 1984;738:237-49.  Back to cited text no. 20
    
21.
Bhatavdekar JM, Vora HH, Patel DD. Serum sialic acid forms as markers for head and neck malignancies. Neoplasma 1988;35:425-34.  Back to cited text no. 21
    
22.
Emmelot P. Biochemical properties of normal and neoplastic cell surfaces; a review. Eur J Cancer 1973;9:319-33.  Back to cited text no. 22
    
23.
Schauer R, Klem S, Retuer G. Biochemistry and role of sialic acid. In: Rosenberg A, editor. Biology of Sialic Acids. New York: Plenum Press; 1995;7-67.  Back to cited text no. 23
    
24.
Hakomori S. Glycosylation defining cancer malignancy: New wine in an old bottle. Proc Natl Acad Sci U S A 2002;99:10231-3.  Back to cited text no. 24
    
25.
Taqi SA. Clinical evaluation of total and lipid bound sialic acid levels in oral precancer and oral cancer. Indian J Med Paediatr Oncol 2012;33:36-41.  Back to cited text no. 25
  [Full text]  
26.
Grøn B, Andersson A, Dabelsteen E. Blood-group-related carbohydrates are expressed in organotypic cultures of human skin and oral mucosa. APMIS 1999;107:779-90.  Back to cited text no. 26
    
27.
Baxi BR, Patel PS, Adhvaryu SG. A report on clinical importance of serum glycoconjugates in oral cancer. Indian J Clin Biochem1990;5:139-44.  Back to cited text no. 27
    
28.
Joshi M, Patil R. Estimation and comparative study of serum total sialic acid levels as tumor markers in oral cancer and precancer. J Cancer Res Ther 2010;6:263-6.  Back to cited text no. 28
    
29.
Kadam CY, Katkam RV, Suryakar AN, Kumbar KM, Kadam DP. Biochemical markers in oral cancer. Biomed Res 2011;22:76-80.  Back to cited text no. 29
    
30.
Sawhney H, Kumar CA. Correlation of serum biomarkers (TSA & LSA) and epithelial dysplasia in early diagnosis of oral precancer and oral cancer. Cancer Biomark 2011;10:43-9.  Back to cited text no. 30
    
31.
Pradeep MR, Deepa K, Kumar SM, Kumar DV, Sujith R. Serum and salivary sialic acid and L-fucose as prognostic markers in potentially malignant disorders and oral cancer. Unique J Med Dent Sci 2014;2:76-83.  Back to cited text no. 31
    
32.
Rajpura KB, Patel PS, Chawda JG, Shah RM. Clinical significance of total and lipid bound sialic acid levels in oral pre-cancerous conditions and oral cancer. J Oral Pathol Med 2005;34:263-7.  Back to cited text no. 32
    
33.
Xing RD, Chen RM, Wang ZS, Zhang YZ. Serum sialic acid levels in patients with oral and maxillofacial malignancy. J Oral Maxillofac Surg 1991;49:843-7.  Back to cited text no. 33
    
34.
Shashikanth MC, Rao BB. Study of serum fucose and serum sialic acid levels in oral squamous cell carcinomia. Indian J Dent Res 1994;5:119-24.  Back to cited text no. 34
    
35.
Kimura Y, Fujieda S, Takabayashi T, Tanaka T, Sugimoto C, Saito H, et al. Conventional tumor markers are prognostic indicators in patients with head and neck squamous cell carcinoma. Cancer Lett 2000;155:163-8.  Back to cited text no. 35
    
36.
Wilma Delphine Silvia CR, Vasudevan DM, Prabhu KS. Evaluation of serum glycoproteins in oral carcinoma. Indian J Clin Biochem 2001;16:113-5.  Back to cited text no. 36
    
37.
Dhakar N, Astekar M, Jain M, Saawarn S, Saawarn N. Total sialic acid, total protein and total sugar levels in serum and saliva of oral squamous cell carcinoma patients: A case control study. Dent Res J (Isfahan) 2013;10:343-7.  Back to cited text no. 37
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
Print this article  Email this article
            

    

 
   Search
 
  
    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Article in PDF (2,293 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed251    
    Printed3    
    Emailed0    
    PDF Downloaded58    
    Comments [Add]    

Recommend this journal

Journal of Oral and Maxillofacial Pathology | Published by Wolters Kluwer - Medknow
Online since 15th Aug, 2007