Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contact Us Login 
An Official Publication of the Indian Association of Oral and Maxillofacial Pathologists


 
  Table of Contents    
ONLINE ONLY ARTICLES - ORIGINAL ARTICLE  
Year : 2018  |  Volume : 22  |  Issue : 3  |  Page : 446
 

Immunohistochemical expression of osteonectin, matrix metalloproteinases-9 and Ki-67 in ameloblastoma


1 Department of Oral and Maxillofacial Pathology and Microbiology, CKS Theja Institute of Dental Science and Research, Tirupati, Andhra Pradesh, India
2 Department of Oral and Maxillofacial Pathology and Microbiology, Narayana Dental College, Nellore, Andhra Pradesh, India
3 Department of Oral and Maxillofacial Pathology and Microbiology, Anil Neerukonda Institute of Dental Sciences, Visakhapatnam, Andhra Pradesh, India
4 Department of Oral Medicine and Radiology, Anil Neerukonda Institute of Dental Sciences, Visakhapatnam, Andhra Pradesh, India
5 Department of Periodontics, Anil Neerukonda Institute of Dental Sciences, Visakhapatnam, Andhra Pradesh, India

Date of Submission14-Dec-2017
Date of Acceptance03-Jul-2018
Date of Web Publication14-Dec-2018

Correspondence Address:
K Indirapriyadarsini
Department of Oral and Maxillofacial Pathology and Microbiology, CKS Theja Institute of Dental Science and Research, Tirupati - 517 520, Andhra Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jomfp.JOMFP_271_17

Rights and Permissions

 

   Abstract 


Background: Ameloblastoma (AM) is a benign odontogenic neoplasm characterized by local invasiveness and recurrence. We have evaluated the immunohistochemical expressions of osteonectin (ON), matrix metalloproteinase-9 (MMP-9) and Ki-67 in AM to understand the biologic behavior of this neoplasm.
Aim: The aim of this study is to evaluate the expression of ON, MMP-9 and Ki-67 in AM.
Materials and Methods: The study sample included archival tissues embedded in paraffin blocks histopathologically diagnosed as AM (20 cases). Three serial sections of each tissue specimen were stained separately with ON, MMP-9 and Ki-67 (immunohistochemistry stain) and evaluated. The data were analyzed using Spearman rank correlation test.
Results: All AM cases 20/20 (100%) exhibited positive immunostaining for ON, MMP-9 and Ki-67.
Conclusion: Increased expression of ON, MMP-9 and Ki-67 in AM indicates that these molecules might play a role in the regulation and aggressive nature of this neoplasm.


Keywords: Ameloblastoma, Ki-67, matrix metalloproteinase-9, osteonectin


How to cite this article:
Indirapriyadarsini K, Raghunath V, Naidu B V, Ramakrishna BB, Tangudu A, Lokesh K V. Immunohistochemical expression of osteonectin, matrix metalloproteinases-9 and Ki-67 in ameloblastoma. J Oral Maxillofac Pathol 2018;22:446

How to cite this URL:
Indirapriyadarsini K, Raghunath V, Naidu B V, Ramakrishna BB, Tangudu A, Lokesh K V. Immunohistochemical expression of osteonectin, matrix metalloproteinases-9 and Ki-67 in ameloblastoma. J Oral Maxillofac Pathol [serial online] 2018 [cited 2019 Jun 16];22:446. Available from: http://www.jomfp.in/text.asp?2018/22/3/446/247386





   Introduction Top


Ameloblastomas (AMs) are benign, slow-growing, aggressive neoplasms of epithelial origin mainly affecting the posterior mandibular region, with a poorly understood potential for rare metastasis.[1],[2] The relative frequency of AM ranged from 11% to 92%, and it was noted to be 60% among odontogenic tumors, in the Indian scenario.[3],[4] The clinical, radiological and histological features of this neoplasm have been well characterized.[5] They are capable of reaching large sizes with extensive bone erosion and destruction or conversely infiltrating into the medullary spaces causing local invasion and leading to high-recurrence rates.[6],[7],[8]

Many markers have been used to study the biological nature of this neoplasm. Osteonectin (ON)/secreted protein acidic and rich in cysteine (SPARC) is involved in the regulation of important physiological processes such as cell proliferation and cell migration that require the modulation of cellular-extracellular matrix (ECM) and cell-growth factor interactions. It also participates in pathological responses to tumorigenesis, tumor invasion and progression.[9]

Matrix metalloproteinases (MMPs) are proteinases that participate in ECM degradation that release mitogenic factors accounting for increased tumor cell proliferation, thus contributing to the local invasiveness of these tumors.[10],[11]

Ki-67 is a well-known invasion and cell proliferation marker that helps in predicting aggressiveness. It is a nuclear nonhistone protein which is required for maintaining the cell cycle.[12],[13]

This study aims to evaluate the expression of ON along with MMP-9 and Ki-67 to confirm its contribution to the aggressive and infiltrative behavior of these challenging, commonly occurring neoplasm.


   Materials and Methods Top


This laboratory-based immunohistochemistry (IHC) study was conducted for 6 months, the study sample involved the use of buffered formalin fixed, paraffin-embedded tissues of histologically diagnosed cases of AM retrieved from the archives of the Department of Oral and Maxillofacial Pathology and Microbiology, Narayana Dental College and Hospital, Nellore, Andhra Pradesh, India. Since paraffin-embedded tissue specimens were used in the study, ethical clearance was not sought. Cases with complete patient record were included in the study. Necrotic tumor areas or areas with the deterioration of tissue morphology due to processing were discarded in the analysis.

A total of 20 cases of AM were evaluated immunohistochemically for ON, MMP-9 and Ki-67 expression. Six cases of breast cancer were used as positive controls for ON (2 cases), MMP-9 (2 cases) and Ki-67 (2 cases). For negative control, TBS solution was used instead of primary antibody.

Two to three serial sections of 4–5 μm thickness were made and taken onto Poly-L-Lysine coated slides. The sections were deparaffinized, rehydrated and immersed in deionized water for 5 min. The slides were placed in the slide tank containing citrate buffer solution for immunostaining. The sections were covered with an appropriate volume of peroxidase block solution (containing 3% hydrogen peroxide) for 15 min.

Following this, the slides were gently washed with Tris-buffered saline and kept for 5 min in the same solution. Universal protein blocking was done with appropriate volume of Power Block™ solution for 15 min. The sections were covered with appropriate volume of respective primary antibody solution. For negative control, TBS solution was used instead of primary antibody. Application of Super Enhancer™ Reagent was done followed by application of Poly-HRP Reagent. Application of appropriate volume of freshly prepared substrate chromogen solution was carried out until acceptable color intensity has been reached. The slides were then counterstained with Harris Hematoxylin stain.


   Results Top


In this study, all the study samples were observed by two observers. The counting of positively stained cells was done independently under ×10, ×20 and ×40 objectives. Reliability analysis was done to test the consistency between the two observers. Since no interobserver bias was observed between the values of the two observers, the values of the first observer were taken for analysis.

Interpretation of immunostaining

The anti-ON, MMP-9 and Ki-67 antibody expression by the tumor cells showed deposition of brown pigmentation in the cytoplasm (ON and MMP-9) and nucleus (Ki-67) that were indicative of positive immunoreactivity [Figure 1], [Figure 2], [Figure 3].
Figure 1: Osteonectin – Photomicrograph showing (a) weak staining, (b) moderate staining, (c) strong staining, (d) very strong staining of the tumor cells and the subjacent stromal component (×40)

Click here to view
Figure 2: Matrix metalloproteinase-9 – Photomicrograph showing (a) weak staining, (b) moderate staining, (c) strong staining, (d) very strong staining of the tumor cells and the subjacent stromal component (×40)

Click here to view
Figure 3: Ki-67 – Photomicrograph showing strong staining in peripheral columnar as well as parabasal cells (a) ×20 (b) ×40

Click here to view


Evaluation of osteonectin and matrix metalloproteinase-9 immunostaining

The entire tumor section was assessed for the immunohistochemical evaluation. A semi-quantitative assessment as proposed by Krajewska et al. (1996) was employed to evaluate the immunostaining of ON and MMP-9 by considering both the intensity (I) of staining and the percentage of positive cells (P). The percentage (P) of positively stained tumor cells was determined by screening the entire tumor section, and each section was assigned to one of the following immunoscore categories.

Scoring system for percentage of positive cells

0. 0%–4%

1. 5%–24%

2. 25%–49%

3, 50%–74%

4. 75%–100%.

Scoring system for intensity of staining

0. Negative

1. Light yellow

2. Yellow-brown

3. Dark brown.

Staining intensity was measured based on the scoring system. For each section, a final score was obtained by multiplying the percentage of positive cells (P) by the staining intensity scores (I) as proposed by Shen et al. (2010).

Thus, the final immunoscores for ON and MMP-9 were then assigned to one of the following groups of staining expression.

  • Weak (+)-0–2
  • Moderate (+ +)-3–5
  • Strong (+ + +)-6–8
  • Very strong (+ + + +)-9–12.


Evaluation of Ki-67 immunostaining

Ki-67 immunostaining was quantitatively evaluated by the method proposed by Mitrou et al. The average numbers of positively stained nuclei were counted in each stained section in 10 high-power microscopic fields (×400). The final immunoscores were calculated by adding up all the positively stained nuclei in 10 high-power fields and dividing it by 10.

Scoring system for Ki-67 immunostaining

  • Weak (+)–<5 positive epithelial cells
  • Moderate (++)–6–10 positive cells
  • Strong (+++)–11–20 positive cells
  • Very strong (++++)–>21 positive cells.


Statistical analysis

Interobserver agreement was evaluated using kappa statistics as follows: it was considered as poor agreement when the kappa value was <0.40, values between 0.40 and 0.59 was considered as fair agreement, between 0.60 and 0.74 as good agreement, and between 0.75 and 1.00 as excellent agreement.

The differences in statistical values in the immunoscores between ON, MMP-9 and Ki-67 were compared and analyzed using Spearman rank correlation test for the tumor components of AM. P < 0.005 is considered to be statistically significant.

All AM cases 20/20 (100%) exhibited positive immunostaining for ON, MMP-9 and Ki-67 [Table 1] and [Graph 1]. The total number and percentage distribution of cases based on the IHC expression of ON, MMP-9 and Ki-67 staining in the tumor component of AM is given in [Table 2] and [Graph 2]. The statistical analysis yielded a P = 0.004, 0.09 and 0.004, all of which were significant when the expression was compared between (a) ON and MMP-9, (b) ON and Ki-67 and (c) MMP-9 and Ki-67 immunostaining, respectively, in the tumor component of 20 AM cases [Table 3], [Table 4], [Table 5].
Table 1: Percentage of positive and negative cases of osteonectin, matrix metalloproteinases-9 and Ki-67 immunostaining in 20 cases of ameloblastoma

Click here to view
Table 2: Total number and percentage distribution of cases based on immunohistochemical expression of osteonectin, matrix metalloproteinases-9 and Ki-67 in the tumor component of ameloblastoma

Click here to view
Table 3: Spearman rank correlation between immunohistochemical expression of osteonectin and matrix metalloproteinases-9 staining in the tumor components of 20 ameloblastoma cases

Click here to view
Table 4: Spearman rank correlation between immunohistochemical expression of osteonectin and Ki-67 staining in tumor components of 20 ameloblastoma cases

Click here to view
Table 5: Spearman rank correlation between immunohistochemical expression of matrix metalloproteinases-9 and Ki -67 staining in tumor components of 20 ameloblastoma cases

Click here to view




   Discussion Top


AM is the most frequently occurring odontogenic tumor, and although classified as a benign neoplasm, it is a locally invasive and destructive tumor of the jaw bone with a relatively high rate of recurrence and even metastasizes in rare conditions.[14] Immunohistochemical markers such as ON, MMP-9 and Ki-67 were used in the present study to understand the biologic behavior and mechanisms underlying the local invasiveness associated with this neoplasm.

ON/SPARC is a multifaceted collagen and hydroxyapatite binding glycoprotein. Its main function is to modulate cell-matrix interactions, cell functions and regulation of matrix remodeling through metalloproteinases, etc.[9] It has antiadhesion property; hence, it induces transcription of matrix remodeling metalloproteinases involved in the degradation of the basement membrane, breaks down interstitial connective tissue matrices causing tumor invasion and metastasis.[15],[16],[17]

A study conducted by Jeen et al., Shen et al. in odontogenic tumors, noted the strong expression of ON in some stages of tooth development, AM s, CEOT and AOT cases. They concluded that ON/SPARC regulate calcification process and subsequent hard-tissue formation, hence strongly express in developing tooth germ and odontogenic tumors.[18] ON expression is modulated by growth factors such as transforming growth factor beta 1 (TGF-β1) (TGF-β superfamily), fibroblast growth factor-2, interleukin-1, platelet-contained growth factor, insulin-like growth factor-1, indicating a potential role in modulating invasion and metastasis.[15]

In the present study, ON expression was noted in all the 20 cases (100%) of AMs with varying staining intensities and percentages of positive cells. The staining was localized to the cytoplasm of the basal columnar cells and also to the stellate reticulum-like cells in tumor component. Positive immunostaining was noted in the surrounding stromal cells, such as fibroblasts, endothelial cells, inflammatory cells, osteoblasts and osteocytes, similar to a study conducted by Shen et al.[17]

Further, the presence of ON/SPARC in normal tooth germs and its role in odontogenic tumors still remains controversial, with some researchers supporting its participation in hard-tissue formation/resorption and some vouching for its role in neoplastic progression. Further studies in this regard need to clarify the role of ON/SPARC in odontogenic tumors.

MMPs, also called matrixins, are a family of zinc and calcium-dependent proteolytic enzymes that degrade ECM macromolecules, such as collagens, gelatins, fibronectin, tenascin and laminin, at physiological pH.[19],[20] Under physiological conditions, these enzymes play central roles in ECM regulation during embryonic development and tissue remodeling.[21] They can bring about a breach in the basement membrane by cleaving of Type IV collagen as a preface to invasion. In many aggressive tumors, it has been noted that there is abnormal expression of MMP-1, 2 and 9.[22] The strong expression of MMPs and loss or weak expression of TIMPs in AMs reflect its aggressive nature and high potential to recur.[23]

In the present study, MMP-9 expression was noted in all the 20 (100%) cases of AMs with different staining intensities which were similar to study conducted by Ribeiro et al. but in contrast to the study conducted by Kumamoto et al.[11],[21] Strong immunostaining was observed in most of the cases similar to studies conducted by Shen et al., Pinheiro et al., Zhong and Tue, Qian and Huang and Teronen et al. but contrasted with those of Kumamoto et al. who observed weak immunostaining of MMP-9 in AMs.[17],[21],[23],[24],[25],[26],[27],[28],[29]

The immunostaining was localized to the cytoplasm of the basal columnar cells/peripheral cells and stellate reticulum-like cells/central tumoral cells of nests, follicles and cords of neoplastic odontogenic epithelium similar to observation of Shen et al.[17] The results were in contrast to studies conducted by Pinheiro et al. and Kumamoto et al. where the expression of MMP-9 was restricted to the peripheral tumoral cells.[21],[26]

Although MMPs, particularly MMP-9, promote tumor angiogenesis and regulate cell breakdown to facilitate invasiveness and metastasis of carcinoma cells, its role in neoplastic progression in odontogenic tumors per se in AMs needs to be defined precisely.

It is suggested that ON/SPARC could interact with MMP-9 and induce a series of invasion of the pericellular microenvironment by the neoplastic cells and participate in the proteolysis of ECM of AM. MMP-9 and ON/SPARC both being matricellular proteins with lot of interdependency between them either directly or through other ECM molecules, is known to act synergistically in degradation of ECM and angiogenesis.[17],[30]

Ki-67 protein (also known as MKI67) is a cellular marker for proliferation. The proliferative activity of a tumor or a tissue is determined by the number of cells in the cycle and the time taken to complete the cell cycle.[31],[32] There is a strong correlation between the proliferation rate of tumor cells and the clinical, behavioral outcome, i.e., its aggressiveness.[31],[33],[34] Proliferation rate can be assessed to determine the likelihood of recurrences or aggressive behavior and could serve as an added factor in determining the management and outcome of this neoplasm.[35]

Proliferative markers such as Ki-67 and PCNA have been used to study the proliferation rate of AM in studies conducted by Ong'uti et al., Sandra et al., Abdel-Aziz and Amin, Carreón-Burciaga et al., Jaafari-Ashkavandi et al. and Meer et al.[32],[33],[34],[35],[36],[37] The superiority of Ki-67 in comparison with PCNA was demonstrated by McCormick and Hall and Gerdes et al.[38],[39]

In the present study, Ki-67 expression was noted in all the 20 (100%) cases. Ki-67 positivity was localized to nuclei, predominantly in basal cells with occasional suprabasal positive nuclei seen in the stellate reticulum-like cells. The quantitative method of evaluation of Ki-67 staining as proposed by Mitrou et al. was followed in the present study.[40] Increased Ki-67 expression, as noted in our and other studies does prove its role in aggressive behavior of AMs. IHC procedures are technique sensitive, and standardization was a tedious procedure. Once this limitation was overcome, the study gave accurate results.


   Conclusion Top


The present study using immunohistochemical markers ON, MMP-9 and Ki-67 helped us understand the biologic behavior of AM. Further studies are required to address the role of ON in tumorigenesis and the interactions of both ON/SPARC and MMP-9 with factors which could bring an increase in Ki-67 expression. This may provide a better understanding of this neoplasm, leading to the development of effective preventive, diagnostic and treatment approaches.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Oliveira LR, Matos BH, Dominguete PR, Zorgetto VA, Ribeiro-Silva A. Ameloblastoma: Report of two cases and a brief literature review. Int J Odontostomat 2011;5:293-9.  Back to cited text no. 1
    
2.
Ladeinde AL, Ogunlewe MO, Bamgbose BO, Adeyemo WL, Ajayi OF, Arotiba GT, et al. Ameloblastoma: Analysis of 207 cases in a Nigerian teaching hospital. Quintessence Int 2006;37:69-74.  Back to cited text no. 2
    
3.
Krishnapillai R, Angadi PV. A clinical, radiographic, and histologic review of 73 cases of ameloblastoma in an Indian population. Quintessence Int 2010;41:e90-100.  Back to cited text no. 3
    
4.
Sriram G, Shetty RP. Odontogenic tumors: A study of 250 cases in an Indian teaching hospital. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:e14-21.  Back to cited text no. 4
    
5.
Reichart PA, Philipsen HP, Sonner S. Ameloblastoma: Biological profile of 3677 cases. Eur J Cancer B Oral Oncol 1995;31B: 86-99.  Back to cited text no. 5
    
6.
Al-Khateeb T, Ababneh KT. Ameloblastoma in young Jordanians: A review of the clinicopathologic features and treatment of 10 cases. J Oral Maxillofac Surg 2003;61:13-8.  Back to cited text no. 6
    
7.
Gümgüm S, Hoşgören B. Clinical and radiologic behaviour of ameloblastoma in 4 cases. J Can Dent Assoc 2005;71:481-4.  Back to cited text no. 7
    
8.
Abu El-Naaj I, Emodi O, Peled M. Metachronous ameloblastomas in the maxilla and mandible: Report of a case. J Craniomaxillofac Surg 2005;33:349-51.  Back to cited text no. 8
    
9.
Tai IT, Tang MJ. SPARC in cancer biology: Its role in cancer progression and potential for therapy. Drug Resist Updat 2008;11:231-46.  Back to cited text no. 9
    
10.
Zhong Y, Guo W, Wang L, Chen X. Molecular markers of tumor invasiveness in ameloblastoma: An update. Ann Maxillofac Surg 2011;1:145-9.  Back to cited text no. 10
[PUBMED]  [Full text]  
11.
Ribeiro BF, Iglesias DP, Nascimento GJ, Galvão HC, Medeiros AM, Freitas RA, et al. Immunoexpression of MMPs-1, -2, and -9 in ameloblastoma and odontogenic adenomatoid tumor. Oral Dis 2009;15:472-7.  Back to cited text no. 11
    
12.
Bologna-Molina R, Mosqueda-Taylor A, Lopez-Corella E, de Almeida OP, Carrasco-Daza D, Farfán-Morales JE, et al. Comparative expression of syndecan-1 and Ki-67 in peripheral and desmoplastic ameloblastomas and ameloblastic carcinoma. Pathol Int 2009;59:229-33.  Back to cited text no. 12
    
13.
Nafarzadeh S, Seyedmajidi M, Jafari S, Bijani A, Rostami-Sarokolaei A. A comparative study of PCNA and Ki-67 expression in dental follicle, dentigerous cyst, unicystic ameloblastoma and ameloblastoma. Int J Mol Cell Med 2013;2:27-33.  Back to cited text no. 13
    
14.
Ahlem B, Wided A, Amani L, Nadia Z, Amira A, Faten F, et al. Study of Ki67 and CD10 expression as predictive factors of recurrence of ameloblastoma. Eur Ann Otorhinolaryngol Head Neck Dis 2015;132:275-9.  Back to cited text no. 14
    
15.
Nagi R, Sahu S, Rakesh N. Molecular and genetic aspects in the etiopathogenesis of ameloblastoma: An update. J Oral Maxillofac Pathol 2016;20:497-504.  Back to cited text no. 15
[PUBMED]  [Full text]  
16.
Yan Q, Sage EH. SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem 1999;47:1495-506.  Back to cited text no. 16
    
17.
Shen LC, Chen YK, Hsue SS, Shaw SY. Expression of osteonectin/secreted protein acidic and rich in cysteine and matrix metalloproteinases in ameloblastoma. J Oral Pathol Med 2010;39:242-9.  Back to cited text no. 17
    
18.
Jeen GB, Kim SN, Kim EC. Expression of osteonectin in developing tooth germ and oddontogenic tumors. J Korean Assoc Oral Maxillofac Surg 1999;25:311-23.  Back to cited text no. 18
    
19.
Hayakawa T. Matrix metalloproteinases (MMPs) and tissue inhibitors metalloproteinases (TIMPs) in the development and disease of oral tissues. Dent Jpn 1998;34:167-77.  Back to cited text no. 19
    
20.
Sah P, Menon A, Kamath A, Chandrashekar C, Carnelio S, Radhakrishnan R, et al. Role of immunomarkers in the clinicopathological analysis of unicystic ameloblastoma. Dis Markers 2013;35:481-8.  Back to cited text no. 20
    
21.
Kumamoto H, Yamauchi K, Yoshida M, Ooya K. Immunohistochemical detection of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in ameloblastomas. J Oral Pathol Med 2003;32:114-20.  Back to cited text no. 21
    
22.
Farias LC, Gomes CC, Rodrigues MC, de Castro WH, Lacerda JC, Ferreira EF, et al. Epigenetic regulation of matrix metalloproteinase expression in ameloblastoma. BMC Clin Pathol 2012;12:11.  Back to cited text no. 22
    
23.
Zhong M, Tue Y. Expression of metalloproteinases in human ameloblastoma. Int Chin J Dent 2004;4:19-26.  Back to cited text no. 23
    
24.
Siqueira AS, Carvalho MR, Monteiro AC, Freitas VM, Jaeger RG, Pinheiro JJ. Matrix metalloproteinases, TIMPs and growth factors regulating ameloblastoma behavior. Histopathology 2010;57:128-37.  Back to cited text no. 24
    
25.
Anne R, Krisnuhoni E, Chotimah C, Latief BS. Matrix metalloproteinase-9 (mmp-9) expression in different subtypes of ameloblastoma. J Maxillofac Oral Surg 2014;13:281-5.  Back to cited text no. 25
    
26.
Pinheiro JJ, Freitas VM, Moretti AI, Jorge AG, Jaeger RG. Local invasiveness of ameloblastoma. Role played by matrix metalloproteinases and proliferative activity. Histopathology 2004;45:65-72.  Back to cited text no. 26
    
27.
Bariş E, Sengüven B, Bozkaya S, Oygür T. Immunohistochemical analysis of matrix metalloproteinases-1,-9 and Tenascin in odontogenic lesions. Eur J Inflamm 2014;12:419-27.  Back to cited text no. 27
    
28.
Qian Y, Huang HZ. The role of RANKL and MMP-9 in the bone resorption caused by ameloblastoma. J Oral Pathol Med 2010;39:592-8.  Back to cited text no. 28
    
29.
Teronen O, Salo T, Konttinen YT, Rifkin B, Vernillo A, Ramamurthy NS, et al. Identification and characterization of gelatinases/type IV collagenases in jaw cysts. J Oral Pathol Med 1995;24:78-84.  Back to cited text no. 29
    
30.
Vaz J, Ansari D, Sasor A, Andersson R. SPARC: A potential prognostic and therapeutic target in pancreatic cancer. Pancreas 2015;44:1024-35.  Back to cited text no. 30
    
31.
Brown DC, Gatter KC. Monoclonal antibody Ki-67: Its use in histopathology. Histopathology 1990;17:489-503.  Back to cited text no. 31
    
32.
Carreón-Burciaga RG, González-González R, Molina-Frechero N, Bologna-Molina R. Immunoexpression of Ki-67, MCM2, and MCM3 in ameloblastoma and ameloblastic carcinoma and their correlations with clinical and histopathological patterns. Dis Markers 2015;2015:683087.  Back to cited text no. 32
    
33.
Sandra F, Mitsuyasu T, Nakamura N, Shiratsuchi Y, Ohishi M. Immunohistochemical evaluation of PCNA and Ki-67 in ameloblastoma. Oral Oncol 2001;37:193-8.  Back to cited text no. 33
    
34.
Jaafari-Ashkavandi Z, Geramizadeh B, Ranjbar MA. P63 and Ki-67 expression in dentigerous cyst and ameloblastomas. J Dent (Shiraz) 2015;16:323-8.  Back to cited text no. 34
    
35.
Ong'uti MN, Cruchley AT, Howells GL, Williams DM. Ki-67 antigen in ameloblastomas: Correlation with clinical and histological parameters in 54 cases from kenya. Int J Oral Maxillofac Surg 1997;26:376-9.  Back to cited text no. 35
    
36.
Abdel-Aziz A, Amin MM. EGFR, CD10 and proliferation marker Ki67 expression in ameloblastoma: Possible role in local recurrence. Diagn Pathol 2012;7:14.  Back to cited text no. 36
    
37.
Meer S, Galpin JS, Altini M, Coleman H, Ali H. Proliferating cell nuclear antigen and Ki67 immunoreactivity in ameloblastomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:213-21.  Back to cited text no. 37
    
38.
McCormick D, Hall PA. The complexities of proliferating cell nuclear antigen. Histopathology 1992;21:591-4.  Back to cited text no. 38
    
39.
Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H, et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984;133:1710-5.  Back to cited text no. 39
    
40.
Mitrou GK, Tosios KI, Kyroudi A, Sklavounou A. Odontogenic keratocyst expresses vascular endothelial growth factor: An immunohistochemical study. J Oral Pathol Med 2009;38:470-5.  Back to cited text no. 40
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
Print this article  Email this article
            

    

 
   Search
 
  
    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Article in PDF (1,807 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed112    
    Printed3    
    Emailed0    
    PDF Downloaded32    
    Comments [Add]    

Recommend this journal

Journal of Oral and Maxillofacial Pathology | Published by Wolters Kluwer - Medknow
Online since 15th Aug, 2007