Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contact Us Login 
An Official Publication of the Indian Association of Oral and Maxillofacial Pathologists


 
  Table of Contents    
ORIGINAL ARTICLE  
Year : 2013  |  Volume : 17  |  Issue : 3  |  Page : 363-366
 

Biosafe alternative to xylene: A comparative study


Department of Oral and Maxillofacial Pathology, Himachal Institute of Dental Sciences, Paonta Sahib, Sirmour, Himachal Pradesh, India

Date of Web Publication17-Jan-2014

Correspondence Address:
Amita Negi
Department of Oral and Maxillofacial Pathology, Himachal Institute of Dental Sciences, Paonta Sahib, Sirmour, Himachal Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-029X.125199

Rights and Permissions

 

   Abstract 

Background: Xylene in one of the non-substitutable chemical used in histology laboratories. However, it is known to have many toxic effects. The toxic effects of xylene include heart and kidney injuries, some fatal blood dyscrasia and other less dangerous problems, such as skin erythema, drying, scaling and secondary infections. The exposure and handling of xylene is maximum during deparaffinizing tissue sections. Aims : The aim of this study was to evaluate the efficacy of 1.7% dishwashing soap (DWS) solution as a deparaffinizing agent for hematoxylin and eosin (H and E) staining and compare it with xylene. Materials and Methods : Sixty sections of 4 μm were obtained from 30 formalin-fixed paraffin-embedded (FFPE) tissues and were considered in two different groups, groups A and B. Slides in group A were stained with routine H and E staining procedure; whereas, slides in group B were stained using 1.7% DWS as a deparaffinizing agent. Statistical Analysis Used: Wilcoxon matched-pairs signed rank test was used to calculate the test of significance (P-value significant at ≤0.05). Results and Conclusion : 1.7% DWS was found to be an effective alternative deparaffinizing agent to xylene and meanwhile facilitating as less biohazardous, economical and a faster deparaffinizing agent.


Keywords: Deparaffinization, hematoxylin and eosin, liquid dishwashing solution, xylene


How to cite this article:
Negi A, Puri A, Gupta R, Chauhan I, Nangia R, Sachdeva A. Biosafe alternative to xylene: A comparative study. J Oral Maxillofac Pathol 2013;17:363-6

How to cite this URL:
Negi A, Puri A, Gupta R, Chauhan I, Nangia R, Sachdeva A. Biosafe alternative to xylene: A comparative study. J Oral Maxillofac Pathol [serial online] 2013 [cited 2019 Aug 19];17:363-6. Available from: http://www.jomfp.in/text.asp?2013/17/3/363/125199



   Introduction Top


Many sophisticated, immunological and molecular biological techniques have been introduced into pathological practice during past few decades that helps in precise diagnosis. However, hematoxylin and eosin (H and E) stained paraffin sections still remain the most widely used technique for routine diagnostic work. Though for the last 150 years, the method of preparing these sections has remained largely unchanged. [1] In addition to H and E, the components in the H and E staining procedure are xylene and graded alcohol which are used to carry out the intermediate steps of deparaffinization, rehydration and dehydration of tissue sections during the staining. [2] The problems associated with this age old procedure are the toxicity of reagents used particularly xylene, cost containment, problem of disposal of hazardous substances and polluting working environment. [3]

Xylene is an aromatic hydrocarbon which is extremely biohazardous. The histopathological laboratory technicians are routinely exposed to xylene during procedures like tissue processing, clearing, staining, placing a cover slip and cleaning tissue processors. The exposure and handling of xylene is maximum during dewaxing of sections. The main effects of inhaling xylene vapor are depression of the central nervous system with symptoms such as headache, dizziness, nausea and vomiting. Long-term exposure may lead to irritability, insomnia agitation, extreme tiredness, tremors, impaired concentration and short-term memory. [4],[5] The other toxic effects of xylene include acute neurotoxicity, heart and kidney pathologies, some fatal blood dyscrasia, skin erythema drying and scaling of skin. All these effects are caused by depletion of mitochondrial adenosine triphosphate (ATP) in the affected cells. [6],[7],[8]

Many substitute chemicals like aliphatic and aromatic hydrocarbons, limonene reagents and mineral oil mixtures have been used to substitute xylene as a clearing agent during tissue processing.

Falkeholm et al.,[1] and Buesa and Peshkov [6] have shown the advantages of hot dishwashing soap (DWS) solution for deparaffinization of tissue sections for H and E staining and some special staining procedures like periodic acid-Schiff (PAS) staining and Van Gieson staining. Henwood [9] has also successfully used hot DWS solution for dewaxing in immunohistochemistry.

Therefore, this study was conducted to determine the applicability of hot DWS solution as deparaffinizing agent in H and E staining.


   Materials and Methods Top


Thirty formalin-fixed paraffin-embedded (FFPE) tissues were used for the study. Two sections of 4 μm were obtained from each of 30 FFPE tissues and were considered in two different groups, groups A and B. Slides in group A were stained with conventional H and E staining procedure using xylene as deparaffinizing agent and slides in group B were stained using 1.7% DWS solution at 90°C as deparaffinizing agent. The DWS solution was prepared by dissolving 25 ml of household DWS (Pril Dishwashing Liquid) in 1,500 ml of distilled water for a 1.7% solution. The protocol followed for groups A and B are given in [Table 1] and [Table 2], respectively.

Slides in each group were scored by three different oral pathologists referred as O1, O2 and O3 (Two HODs of renowned colleges and an Associate Professor) and scored considering the following criteria:

Nuclear staining : Adequate = 1, inadequate = 0

Cytoplasmic staining : Adequate = 1, inadequate = 0

Clarity of staining : Present = 1, absent = 0

Uniformity of staining : Present = 1, absent = 0

Crispness of staining : Present = 1, absent = 0

The scores for each slide were totalled. A score of ≤2 was graded as inadequate for diagnosis, slides with scores 3-5 were considered as adequate for diagnosis.
Table 1: Routine H and E staining using xylene as dewaxing agent

Click here to view
Table 2: Xylene free staining using 1.7% DWS as dewaxing agent

Click here to view



   Statistics Top


The mean value for each grading criteria was calculated for the three observers. Wilcoxon-matched-pairs signed rank test was used to calculate the test of significance ( P ≤ 0.05).


   Results Top


The results for all the grading criteria were found to be statistically insignificant with slightly higher mean values for xylene free staining. Also the percentage of adequacy of diagnosis was found to be higher for O 1 and O 2 (86 and 100%, respectively) for xylene free staining as compared to routine H and E staining (73 and 86%) [Table 3], [Table 4], [Table 5], [Table 6], [Table 7], [Table 8], [Figure 1] and [Figure 2].
Table 3: Nuclear staining

Click here to view
Table 4: Cytoplasmic staining

Click here to view
Table 5: Clarity of staining

Click here to view
Table 6: Uniformity of staining

Click here to view
Table 7: Crispness of staining

Click here to view
Table 8: Percentage of adequacy for diagnosis

Click here to view
Figure 1: Comparison of photomicrographs of sections stained with routine H and E staining in (a) epithelium and connective tissue and (c) Ameloblastoma (100), with xylene free H and E staining in (b) epithelium and connective tissue and (d) Ameloblastoma (100)

Click here to view
Figure 2: Comparison of photomicrographs of slides stained with routine H and E staining in (a) salivary gland tissue and (c) bony tissue (100), with xylene free H and E staining in (b) salivary gland tissue and (d) bony tissue (100)

Click here to view



   Discussion Top


Despite the known toxicity of xylene, it is widely used in histopathology laboratory without any monitoring for the exposure and any standardized method for disposal. Many xylene substitutes are commercially available and have been used during tissue processing. However, during H and E staining procedure, xylene is still being used liberally.

Xylene is a colorless, sweet smelling liquid or gas occurring naturally in petroleum, coal and wood tar. It is named so as it is found in crude wood spirit (Gr. Xylon means wood). Other than occupational exposure, humans can get exposed to xylene via soil contamination from leaking underground tanks containing petroleum products. It may remain in soil and underground water for months or more before getting broken down to other chemicals. It evaporates easily in air and breaks down by sunlight into less harmful chemicals. It can be smelled in air at 0.08-3.7 parts per million (ppm) and can be tasted in water at 0.53-1.8 ppm. [10] Exposure to xylene can occur via inhalation, ingestion and eye or skin contact. It is primarily metabolized in liver by oxidation of methyl group and conjugation with glycine to yield methyl hippuric acid, which is excreted in urine. Very small amount is exhaled as such and usually there is low potential for accumulation within the body. [11],[12] Xylene causes health effects from both acute (<14 days) and chronic (>365 days) exposure. The current Occupational Safety and Health Administration (OSHA) permissible exposure limit for xylene is 100 ppm as an 8 hour time weighted average (TWA) concentration. [5]

Liquid DWS is readily available and is much cheaper as compared to xylene. It is composed of sodium lauryl sulfate, sodium dodecyl benzene sulfonate, cocamidopropyl betaine and nonionic surfactants. [7] The concentration of these components is already monitored by the manufacturer. In our study, we have used DWS in a dilution of 1.7%, hence there are least chances of toxicity to the laboratory personnel.

Though the results were found to be statistically insignificant, the mean values of two observers for clarity of staining, uniformity of staining and crispness of staining showed higher end for xylene free staining as compared to routine H and E staining. The mean values of one observer for nuclear staining and cytoplasmic staining showed higher end for xylene free staining. Even the percentage of adequacy for diagnosis was again higher for xylene free staining for two observers out of three.

The approximate time taken for xylene free staining (45-50 min) is also about half the time taken for the routine H and E staining (75-80 min). Apart from being nontoxic and taking less time for staining, other advantages of using DWS as deparaffinizing agent are its low cost (750 times cheaper), easy handling and easy disposal. The only safety concern is the possibility of finger burns while handling hot DWS solution.


   Conclusion Top


Considering the toxicity of xylene, it is desirable to minimize its use in histopathology laboratory without compromising the staining quality and hence the appropriate diagnosis. Our study shows that staining quality of xylene free H and E staining using hot DWS solution as deparaffinizing agent is equivalent to routine H and E staining. This will help us in maintaining a favorable and healthy laboratory environment.

Although we have significant positive results in our hands, further studies are required including larger sample size and multiple observers.

 
   References Top

1.Falkeholm L, Grant CA, Magnusson A, Mollur E. Xylene-free method for histological preparation: A Multicentre Evaluation. Lab Invest 2001;81:1213-21.  Back to cited text no. 1
    
2.Bancroft JD, Gamble M. Theory and Practice of Histologic Techniques. 6 th ed. Philadalphia, USA: Churchill Livingstone Elsevier; 2011.  Back to cited text no. 2
    
3.Dapson JC, Dapson RW. Hazardous materials in histopathology laboratory, regulations, risks, handeling and disposal. 4 th ed. Battle Creek: Anatech; 2005.  Back to cited text no. 3
    
4.OSHA (Occupational safety and health administration) 2005 Air contaminants Occupational safety and Health Administration. Available from: http://www.osha.gov/comp-links.html [Last accessed on 2009 Dec 16].  Back to cited text no. 4
    
5.Kandyala R, Raghvendra SP, Rajasekharan ST. Xylene: An overview of its health hazards and preventive measures. J Oral Maxillofac Pathol 2001;4:1-5.  Back to cited text no. 5
    
6.Buesa RJ, Peshkov MV. Histology without xylene. Ann Diagn Pathol 2009;13:246-56.  Back to cited text no. 6
[PUBMED]    
7.Ankle MR, Joshi PS. A study to evaluate the efficacy of xylene free hematoxylin and eosin staining procedure as compared to the conventional hematoxylin and eosin staining: An experimental study. J Oral Maxillofac Pathol 2011;15:161-7.  Back to cited text no. 7
[PUBMED]  Medknow Journal  
8.Revilla AS, Pestana CR, Pardo- Andreu GL, Santos AC, Uyemura SA, Gonzales ME, et al. Potential toxicity of toluene and xylene evoked by mitochondrial uncoupling. Toxicol In Vitro 2007;21:782-8.  Back to cited text no. 8
    
9.Henwood AF. The application of detergent dewaxing and rehydration to immunohistochemistry. Biotech Histochem 2012;87:46-50..  Back to cited text no. 9
    
10.Mike F, John FR, Wilson JD, Margaret F, Daniel P, Lisa I. Toxicological profile for xylene. US department of Health Services, public health services, Agency for toxic substance and disease registry. Atlanta, Georgia: Agency for Toxic Substances and Disease Registry; 1995.  Back to cited text no. 10
    
11.Sedivec V, Flek J. Exposure test for xylenes. Int Arch Occup Environ Health 1976;37:219-32.  Back to cited text no. 11
[PUBMED]    
12.Ogata M, Tomokuni K, Takatsuka Y. Urinary excretion of hippuric acid and m- or p-methylhippuric acid in the urine of persons exposed to vapours of toluene and m- or p-xylene as a test of exposure. Br J Int Med 1970;27:43-50.  Back to cited text no. 12
    


    Figures

  [Table 6], [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 7], [Table 8]



 

Top
Print this article  Email this article
            

    

 
   Search
 
  
    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Article in PDF (1,565 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
    Materials and Me...
   Statistics
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1884    
    Printed52    
    Emailed0    
    PDF Downloaded473    
    Comments [Add]    

Recommend this journal

Journal of Oral and Maxillofacial Pathology | Published by Wolters Kluwer - Medknow
Online since 15th Aug, 2007